Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
2.
iScience ; 26(7): 107087, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426348

RESUMO

Despite substantial lignocellulose conversion during mycelial growth, previous transcriptome and proteome studies have not yet revealed how secretomes from the edible mushroom Agaricus bisporus develop and whether they modify lignin models in vitro. To clarify these aspects, A. bisporus secretomes collected throughout a 15-day industrial substrate production and from axenic lab-cultures were subjected to proteomics, and tested on polysaccharides and lignin models. Secretomes (day 6-15) comprised A. bisporus endo-acting and substituent-removing glycoside hydrolases, whereas ß-xylosidase and glucosidase activities gradually decreased. Laccases appeared from day 6 onwards. From day 10 onwards, many oxidoreductases were found, with numerous multicopper oxidases (MCO), aryl alcohol oxidases (AAO), glyoxal oxidases (GLOX), a manganese peroxidase (MnP), and unspecific peroxygenases (UPO). Secretomes modified dimeric lignin models, thereby catalyzing syringylglycerol-ß-guaiacyl ether (SBG) cleavage, guaiacylglycerol-ß-guaiacyl ether (GBG) polymerization, and non-phenolic veratrylglycerol-ß-guaiacyl ether (VBG) oxidation. We explored A. bisporus secretomes and insights obtained can help to better understand biomass valorization.

3.
Int J Biol Macromol ; 246: 125575, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385314

RESUMO

Fungi are main lignin degraders and the edible white button mushroom, Agaricus bisporus, inhabits lignocellulose-rich environments. Previous research hinted at delignification when A. bisporus colonized pre-composted wheat straw-based substrate in an industrial setting, assumed to aid subsequent release of monosaccharides from (hemi-)cellulose to form fruiting bodies. Yet, structural changes and specific quantification of lignin throughout A. bisporus mycelial growth remain largely unresolved. To elucidate A. bisporus routes of delignification, at six timepoints throughout mycelial growth (15 days), substrate was collected, fractionated, and analyzed by quantitative pyrolysis-GC-MS, 2D-HSQC NMR, and SEC. Lignin decrease was highest between day 6 and day 10 and reached in total 42 % (w/w). The substantial delignification was accompanied by extensive structural changes of residual lignin, including increased syringyl to guaiacyl (S/G) ratios, accumulated oxidized moieties, and depleted intact interunit linkages. Hydroxypropiovanillone and hydroxypropiosyringone (HPV/S) subunits accumulated, which are indicative for ß-|O-4' ether cleavage and imply a laccase-driven ligninolysis. We provide compelling evidence that A. bisporus is capable of extensive lignin removal, have obtained insights into mechanisms at play and susceptibilities of various substructures, thus we were contributing to understanding fungal lignin conversion.


Assuntos
Compostagem , Lignina , Lignina/química , Triticum/química , Celulose
4.
J Agric Food Chem ; 64(32): 6267-76, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27431363

RESUMO

Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.


Assuntos
Benzoxazinas/metabolismo , Glicosídeos/metabolismo , Rhizopus/fisiologia , Plântula/microbiologia , Triticum/metabolismo , Benzoxazinas/química , Germinação , Estrutura Molecular , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA